skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Can"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Global sensitivity analysis (GSA) of distribution system with respect to stochastic PV variations plays an important role in designing optimal voltage control schemes. This paper proposes a Kriging, i.e., Gaussian process modeling enabled data-driven GSA method. The key idea is to develop a surrogate model that captures the hidden global relationship between voltage and real and reactive power injections from the historical data. With the surrogate model, the Sobol index can be conveniently calculated to assess the global sensitivity of voltage to various power injection variations. Comparison results with other model-based GSA methods on the IEEE 37-bus feeder, such as the polynomial chaos expansion and the Monte Carlo approaches demonstrate that the proposed method can achieve accurate GSA outcomes while maintaining high computational efficiency. 
    more » « less
  2. The development of classical and quantum information–processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies. 
    more » « less
  3. Abstract Photocatalytic anticancer profile of a IrIIIphotocatalyst (Ir3) with strong light absorption, high turnover frequency, and excellent biocompatibility is reported.Ir3showed selective photo‐cytotoxicity against cisplatin‐ and sorafenib‐resistant cell lines while remaining dormant to normal cell lines in the dark.Ir3exhibited excellent photo‐catalytic oxidation of cellular co‐enzyme, the reduced nicotinamide adenine dinucleotide phosphate (NADPH), and amino acids via a single electron transfer mechanism. The photo‐induced intracellular redox imbalance and change in mitochondrial membrane potential resulted in necrosis and apoptosis of cancer cells. Importantly,Ir3exhibited high biocompatibility and photo‐catalytic anticancer efficiency as evident from in vivo zebrafish and mouse cancer models. To the best of our knowledge,Ir3is the first IrIIIbased photocatalyst with such a high biocompatibility and photocatalytic anticancer therapeutic effect. 
    more » « less